Algorithm of Howls

FI—V Y hOY—RI—FRUFF 2 2> FOARGHT

https://github.com/yutian-zhao/aiwolf java
https://github.com/yutian-zhao/aiwolf java/tree/policy only
https://github.com/yutian-zhao/aiwolf python

I~V bDaAYEITPH

The idea of our agent is to separate the function of AlWolf into two parts: 1. Strategy; 2. Character
prediction.

In order to create satisfactory agent with good performance, for strategy part, we refer to the
previous winning agents and adopt multiple strategy for each character.

We modified strategy of SEER, MEDIUM, POSSESSED, VILLAGER, and BODYGUARD.

In order to have satisfactory result, we conducted multiple test running (100 * 100 sets) with past
agents from 1%t to 4" AIWolf International Competition.

After comparing the performance of 15 different agents, we accept various strategy for each
character.

On the other hand, we find agent policies heavily depend on the role prediction based on the game
status, thus the accuracy of the prediction significantly affects the effectiveness of the policy. While
most existing agents rely on the Bayesian inference from previous game logs, we switch to using
neural networks to perform prediction. We expect that the neural network, which is trained from
large amounts of data, can generalize to unseen agents, and recognize action patterns to predict
roles.

L=V =y MEOHERIER OB

As mentioned in the concept part, we adopt multiple strategy for each character. To be more specific,
we modified the Karma strategy for SEER, Fanfan strategy for BODYGUARD, Tomato strategy for
MEDIUM.

For the VILLAGER, we mainly add new strategy of pretending to be SEER in 15-agent games, the idea
is to protect the real SEER in the first or second round.

For the WEREWOLF, we mainly simplify the talk strategy, abandoning the possibility talk selection.
For the POSSESSED, we mainly modify the strategy while pretending to be SEER, but not CO at first
round.

Overall, the positive strategy of most Takeda-based teams (e.g. CO at first round) is drastically
modified of CO when WEREWOLF is detected or successfully protected, or just keep silent at the 1
round.

This negative strategy sets are expected to have better performance in 15-agent games as it adds up
to the alive possibility for most characters.

Apart from that, for character prediction, LSTM is applied, trained from test running with previous
winning agents from 1% to 4™ International Competition.

Having mentioned in the concept section, our agent improves both the policy and the internal
prediction model. To be more specific, we found that while Basket had developed a complicated
action mechanism from previous agents, most decisions are made based on parameters given by
humans which are not necessarily optimal. We analyzed other previous agents with good results and
integrate their policies into ours. For the prediction model, we replace the original Bayesian inference

https://github.com/yutian-zhao/aiwolf_java
https://github.com/yutian-zhao/aiwolf_java/tree/policy_only
https://github.com/yutian-zhao/aiwolf_python

from game logs with a neural network model, which has a novel architecture that composes of
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). The model is trained
on a large amount of data from previous competitions and can be used on any werewolf games with
15 or fewer plays and 6 or fewer roles. The details of the model design are described in the following

section.

« FFBUZ DUV T DOFER
0.7 0.8
0.6 0.7
05 0.6
0.5
0.4
03 0.4
’ 0.3
0.2 0.2
A
0 0
C“—“"CO'_SONO(D'EZS'_(U_Q OGDNEOO“"C_C_Q“_—O'_‘E
So¢scwRT 8 cEEE= cexgosalso=0oc Ec
FRcgfELR2eSc R E5°PL3csds 23859
=ofgzoL0s &% 5 s ¥ C200al 8% 9 &
T o = © = O 26
m Villager winning rate m Villager survival rate M Seer winning rate M Seer survival rate
(a) Villager (b) Seer
0.7 0.7
0.6 0.6
05 0.5
0.4
0.4
0.3
0.3 0.2
0.2 0.1 I | I
0.1 0
II II o8 c28285 2982 E
0 0O @ U I +¥'5 €S O ®®L = ["EO E§§§£§%E_§'£Eg§§
238282852828 ERS S S22z ddg 20EsT 8
EX chH- 3850 & g 5 < g o T (G ©
o " < [a @© = <
= 9] (%] o O
v B Bodyguard winning rate
B Medium winning rate B Medium survival rate M Bodyguard survival rate

(c) Medium (d) Bodyguard

0.6 0.5

0.45
0.5 0.4
0.4 0.35
0.3
0.3 0.25
0.2
0.2 0.15
01 0.1
0.05
0 I 0
=5 £ £ © 0 0 W S 0 ®'J s © VC JC Y ©OCOEXE OO0 ®'75 N ¢
VogmsoTvceL ox >¢c ¢ E= coxmYos=+2o>cgQcE
7 C ¢ = © _ = = 4= = © © =
8385 £TE2PRZLER ST PERLEEeEZRsseeS
DZ B w 9525 38 [=} u'm'_SIS% o =]
T (] - - T O
H Werewolf winning rate ® Werewolf survival rate M Possessed winning rate M Possessed survival rate
(e) Werewolf (f) Possessed

Fig.1 Wining rate & Survival rate of each character (100 * 100 sets)

As shown in Fig.1, the result of winning rate and survival rate have shown previous agents having
different advantages for each character.

After analyzing these agents. we modified the Karma strategy for SEER, Fanfan strategy for
BODYGUARD, Tomato strategy for MEDIUM. For the VILLAGER, we mainly add new strategy of
pretending to be SEER in 15-agent games, the idea is to protect the real SEER in the first or second
round. For the WEREWOLF, we mainly simplify the talk strategy, abandoning the possibility talk
selection. For the POSSESSED, we mainly modify the strategy while pretending to be SEER, but not
CO at first round.

More specific modification can be seen from the following figures.

N e

co when black is detected at first round

Judgement only the executed executed + seer

Talk random talk strategy must talk

co when success guarded no CO

Guard strategy MALLE +3* HWEis 1. seer
LE + EES LS IO 2. medium
REMELTRbENT L e ullkige
A ¥ —ZER

Talk random talk strategy vote to wolf
talk about success guarded
agent

T T

co CO at first round CO at first round
CO as werewolf when CO as werewolf when
possessed alive (agents <= 3) possessed alive (agents <= 3)

Divine Divine from 1 to the end Divine from 1 to the end
Talk Talk about the divined result Talk about the divined result
when werewolf detected. when werewolf detected.
Probability voting strategy Vote to most likely to be
werewolf.

Overall, the positive strategy of most Takeda-based teams (e.g. CO at first round) is drastically
modified of CO when WEREWOLF is detected or successfully protected, or just keep silent at the 1st
round.

There are previous works on using neural networks for role prediction. Among them, [2] provides a
useful analysis of which information is effective in werewolf prediction, and [3] includes more
complex information considering the relationships between other agents and the agent itself. It
extends the model to predict all roles in the 15-person game using fully connected layers. Since role
prediction happens every day except the first day, it’s natural to use a recurrent architecture to take
information from previous days into account. [4][5][6] use Long Short-Term Memory (LSTM), a kind
of RNN. While [4][5] use ids to represent talk contents, [6] use Word2Vec to encode the talk contents.
All the work mentioned only uses fully connected linear layers and tests with the same agents for
training. In this work, we invent a new architecture, which not only considers sequential inputs but
also pair-wise information. We test with unseen agent combinations and compare the model with
the original Bayesian networks.

One important problem is how to represent game information efficiently. According to [2][3], besides
facts like coming out, being alive or not, and divine results, there are actions that convey mutual
relationships, like vote and agreement. This motivates us to encode the information in a 2d matrix
so that mutual information between agent x and agent y can be stored in the entry in row x and
column y. For simple facts, we broadcast to all columns. For example, if agent x is alive, we fill 1 in all
entries in row x. We categorized the game information as 8 types as shown in Table 1.

The CNN architecture is suitable for matrix representations, which can be treated as multi-channel
images. We use CNN to encode the game status and use LSTM to process the sequential information
and finally use a multi-layer perceptron (MLP) to output probabilities of each role for each agent.
The details are described in Appendix 1. The design of the state representation and the model
architecture allows for handling any game type with 15 or fewer players and 6 or fewer roles. We
can simply fill ignored index in the unused entries.

AlWolf competitions having been held for a few years, an abundant amount of game logs has been
cumulated. To make our model generalizable to unseen agents, unlike most existing works which
only focus on game logs from one competition, we train it on the dataset as large as possible. The
data is from GAT2017, CEDEC2017, GAT2018, CEDEC2018, 1st, 2nd, and 4th international AlWolf
competitions, which are public on the official website [7].

We use multi-class cross entropy loss and AdamW optimizer. Besides role prediction, we also
perform vote prediction as an auxiliary task. Early stopping and validation are used to avoid
overfitting. Note that the bodyguard is ignored because we found it hard to identify.

Evaluation

We test the performance of the model in the game held among 15 different agents chosen from
previous competitions and this combination is never seen during training. The prediction accuracy is
depicted in Table 2 for the test set, which is the same as the training set, and in Table 3 for the new
testing game environments. We also compare the accuracy with the original Bayesian model as
shown in Figure 1. Note here we evaluate the model in a real game environment and only choose
the agent with the highest possibility. Unfortunately, we found the model is not as competitive as
the original Bayesian inference. This might be because the model can’t generalize to new
environments as well as Bayesian inference, which can be updated after each game.

=V FOSEORE

Unfortunately, because of the time limitation, the test of newly developed Howls02 agent against
past agents from 15t to 4" competition is not finished.

For the future work, we are planning to conduct multiple test sets (100 * 100 sets) to clarify the
performance of each character.

Currently, we found our strategy of WEREWOLF needs to be improved as it failed in many 5-agent
games competing with Team Basket. Possibly it was because of the simplified talk strategy which we
tend to always vote to the most likely to be werewolf agents. This should be verified and modified in
the near future.

* Reference

[1] http://aiwolf.org/archives/2840
[2] http://aiwolf.org/

Appendix

Appendix 1. Model Architectural

CNN (size 15 x 15):
Conv2d(in=8, out=32, kernel=3, stride=2, pad=0), BatchNorm2d(32), ReLU(),
Conv2d(in=32, out=64, kernel=3, stride=1, pad=0), BatchNorm2d(64), ReLU(),
Linear(in=5*5*64, out=800).

RNN:
LSTM(in=800, out=800).

MLP (role prediction):
Linear(in=800, out=800), ReLU(),
Linear(in=800, out=6*15).

MLP (vote prediction):
Linear(in=800, out=100), ReLU(),
Linear(in=100, out=15), Sigmoid().

http://aiwolf.org/archives/2840

Table 1. State Representation

Channel Range | Description

Known {0,...,6} | Known roles. {1,...,6} represents 6 possible roles. Each agent only know its
own role, except werewolves know its partners.

Alive {0, 1} Alive is 1 and Dead is 0.

Vote {0, 1} If agent x votes for agent b, then 1. Otherwise 0.

Skill {-1, 0, | Divine or identify results for Seer and Medium. Human is -1, Werewolf is

1} 1, and Any is 0.
Coming {0,...,.6} | {1,...,6}if agent x comes out as a specific role. 0 otherwise.
out

Estimate {0,...,6} | {1,...,6}if agent x estimate agent y as a specific role. 0 otherwise.
Attitude {-1, 0, | A negative attitude is -1 while a positive attitude is 1. Otherwise 0.

1}
Identified | {-1, 0, Agent x says it divined or identified agent y as Human (1) or Werewolf (-
1} 1). Otherwise 0.

Table 2. Prediction Accuracy for each role on each day on the test set

1 2 3 4 5 6 7 8 9 10 11 12 13 14
VILLAGER 458 | 60.7 | 688 | 72.7 | 75.1 | 76.7 | 779 | 783 | 782 | 779 | 775 | 77 76.5 | 76
SEER 71.2 | 81.1 | 83.7 | 847 | 851 | 852 | 8.2 | 854 853 | 852 852 | 851 851 | 85
MEDIUM 60 77.1 | 833 | 85.6 | 86.6 | 87 873 | 87.6 | 87.8 | 87.8 | 879 | 879 | 88 88
BODYGUARD | 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WEREWOLF 92.8 | 919 | 91.8 | 92.6 | 93.5 | 941 | 943 | 943 | 944 | 94.4 | 945 | 945 | 946 K 94.6
POSSESSED 55.8 | 619 | 649 | 66.8 | 68 68.8 | 694 | 69.8 | 70.1 | 70.3 | 70.4 | 70.4 | 70.5 @ 70.5

Bodyguard is not predicted. Although a 15-person game can last 14 days at most, most games end in less than 10 days.

Table 3. Prediction Accuracy for each role on each day in testing games

1 2 3 4 5 6 7 8 9 10 11 12 13 14
VILLAGER 44 56 60.7 | 619 | 63.2 | 62.7 | 649 | 66.4 673 | 674 67.7 | 676 K 67.6 | 67.7
SEER 323 | 419 | 354 | 39.1 | 384 | 39.1 | 413 | 413 | 413 | 413 | 413 | 413 | 421 | 421
MEDIUM 459 | 51 51 52.6 | 589 | 576 | 60.5 | 64.1 | 648 | 64.8 | 648 | 64.1 64.1 64.1
BODYGUARD | 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WEREWOLF 853 | 81.1 | 81.7 | 82.6 | 853 | 84.1 H 858 | 853 | 8.5 | 855 | 8.1 | 84.8 | 8.1 | 84.9
POSSESSED 25.6 | 374 | 429 | 451 | 49 46 45.2 | 47.2 | 47.2 | 46.4 | 47.2 | 47.2 | 47.2 | 48

Figure 1. Accumulated number of correct predictions for days in 100 games

400 400 400
—— our method —— our method —— our method
—— old method —— old method —— old method
300 4 300 A 300 A
200 200 200+
100 4 100 1 100 4
0 - T T T T 01 T T T T 0 - T T T T
[100 200 300 400 [} 100 200 300 400] 100 200 300 400
400 villager 400 seer 400 medium
—— our method —— our method —— our method
—— old method —— old method —— old methed
300 A 300 A 300 4
200+ 200 A 2004
100 4 100 1 100 4
0 T T T T [T T T T 01— T T T T
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
bodyguard werewolf possess

Test agents taken from previous competition

S4RINRABEE R R =

[No___________Name ________[soucecode ____Jlmnguage ___
O

N

\I|

il Basket java
2 ioh O java
3 sUper_IL X
4 kgu_ryu X
5 takoyaki x
6 Hachi2 x
7 KP22 X
8 ice X
9 Ncu702 X
10 tonkatsu X
11 CanisLupus X
12 mikami X
13 ichida X
14 daphne X
15 Baguette A java

N
T

I:H

=30 NIRABEE PR A

S 7 S [S

\I{

il toku/ICE java

2 TOT O C#

3 KP22 x

4 Syu X

5 CanisLupus X

6 Tomatoken X

7 SORA X

8 Hideto X

9 HALU @) python
10 Tomato @] java

11 OKAMI @) python
12 karma O java

13 wasabi O java

14 Sashimi O java

[No___________Name ________[soucecode ____Jlmnguage ____

\

1l takeda O java

2 otsuki O java

3 HALU O python
4 JohnDoe O java

5 cube O java

6 daisyo O java

7 Tomo O java

8 simipu @) java

9 Udon O C#

10 Tomato O java

11 wasabi O java

12 FoxuFoxu O python
13 PaSeRi @) java

14 Camellia O java

15 Sashimi O java

\x

S

1

M

NIRANRE

H

ER=

be s lemees s

© 00 N o g B~ W N

I
a b~ W N B O

takeda
hello_wolf
Udon
GO1DeNO
fisherman
fanfan
Tomato
calups
wasabi
kenzi
sonoda
cantar
LittleGirl
takaeye
yskn67

© el © o) © e © [©) © o) ©

X

(@)

java
java
python
java
java
java
java
python
java
java
python
python
python

python

